27. CLASS BJ TRUCK UTILITY ALL WHEEL DRIVE: 4 DOOR

Wegner Auto Dodge Durango Special Service Contract 17149

- Engine, 5.7 Liter V-8 355 HP
- Seating Capacity 5 Passengers
- Cargo Volume 70 Cubic Feet
- Overall Length 202"
- Transmission, Automatic, OD
- · Police engine cooling package
- 220 Amp Alternator
- 750 CCA Heavy duty battery
- Interior center mounted Police dome light with red and white illumination
- Backup Camera
- Power Door Locks
- Power Windows
- Power locks
- · Radio, AM/FM with auxiliary audio port/usb
- Air Bags, Side Impact
- · Rear Heat and Air Conditioning
- · Police wiring and interior power supply for lighting/police equipment
- Cruise Control/Tilt
- · Floor Covering, Carpet
- Guard, Skid Plate Package Manufacturer's Standard (includes skid plates for the fuel tank, transfer case and front suspension)

Base Cost 28553

\$695

- · Towing Capacity 5000 pounds
- Heavy duty suspension, police rated (PPV)
- Brakes ABS, 4-wheel disc brakes
- Trailer Tow pkg., Cooler, Engine Oil Cooler, Cooler, Transmission
- Mirrors, Right & Left Outside
- Rear Window Defroster
- · Seats, Front, Bucket, Cloth
- · Power adjustable driver's seat
- · Seat Covering heavy duty cloth

colors have an upgrade charge

- · Wipers, Multiple Speed
- Wiper, Rear Window
- · Dark tinted glass
- Factory Freight

Delivery 120-150 days

.	
\$595	
\$690	
\$690	
\$195	
\$240	
\$395	
\$1290	
\$325	
\$595	
\$450	
	\$690 \$195 \$240 \$395 \$1290 \$325 \$595

ORDINANCE 2017-___

AN ORDINANCE ESTABLISHING HOW SECTION LINE ROADS ARE DEPICTED ON PLATS

WHEREAS, clear title and ownership of land is important for assessment and taxing purposes.

WHEREAS, the Fall River County Commission has been advised by local surveyors, the Register of Deed and the Director of Equalization of the issues related to section line roads that are neither dedicated to the public nor included within the boundaries of new plats.

All plats submitted to the Fall River County Commissioners shall comply with the following:

The landownership boundary on any plat bordering a section line will extend all the way to the section line regardless of the existence of a county or other road unless the owner does not hold title to said right of way.

First Reading:	
Second Reading:	

Fall River County Commissioner

Attest:

2727 N Plaza Dr. Rapid City, SD 57702

Phone 605-348-6529 Fax 605-342-1160

Prepared for:

Quote

No.:

57987

Date:

Account No.: 1889

2/5/2018

Fall River Co Auditor Phone: (605) 745-5145 906 N River Street Fax: (605) 745-3530 Hot Springs, SD 57747 U.S.A.

Qty	Description	UOM	Sell	Total
1.00	Prepaid Support Agreement	EA	\$2,500.00	\$2,500.00

	Your Price:	\$2,500.00
	Total:	\$2,500.00
Prices are firm until 2/19/2018		
Prepared by: Eric Eisenbraun, ericeisenbraun@goldenwest.com Prepaid Labor \$2,500. Customer has 12 months to use.	Date: 2/5/2018	
Accepted by:	Date:	***************************************
Disclaimer		

Unless otherwise specified, all labor is charged on a time and materials basis. Any additional service charge or travel will apply. Applicable taxes and/or additional freight charges may be added on to the invoice.

Terms: 30% down payment required for sales of \$ 5,000.00 or more, with the balance due Net 15 days of invoicing.

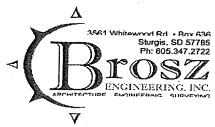
EMERGENCY MANAGEMENT ASSOCIATION SOUTH DAKOTA certifies that the

FRANKLIN MAYNARD

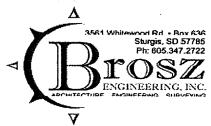
Having met the standards of professionalism established by the Association is hereby designated

CERTIFIED EMERGENCY MANAGER - Advanced

January 2, 2018
DATE


COUNTY	Fall River
PROJECT	17-701
BEI#	

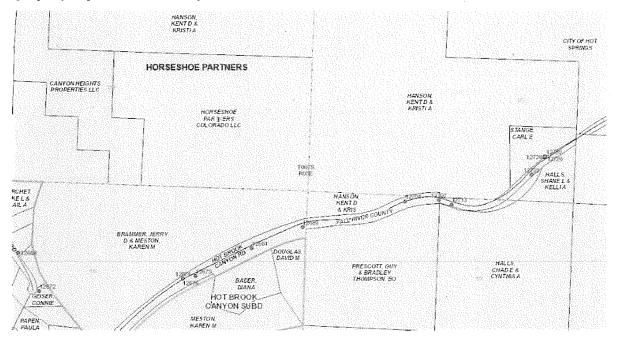
	*								•				
SAME	LE NO.		1		DATE S	AMPLED			DATI	ETESTED		11-30	0-2017
SAMP	LED BY			TES.	TED BY	•	Cha	d Erk		CHEC	KED BY		JHE
MATE	RIAL TYPE			-				URCE		011.20	TED D.		
v	VEIGHT TICKE	ET NUMBE	R OR STA	TION						· LIFT			
										Lii i			
% m	oist. = (wet wt.	5661.4	- dry wt.) /	dry wt. x 100) ==	4.2%		L. L., P.	L., and	P. I.		L.L.	P.L.
0	RIGINAL DRY S.	AMPLE WT.	(0.1 g)	5434.7	1	L	a. can nu		•		Г	17	36
sieve s	ize	Retained	% total	Acc.% pass.	Acc.% pass.	SPEC	b. wt. can	+ wet soil		6.	01 g)	22.40	20.41
mm	in	(0.1g)	ret. (0.1%)	(0.1%)	(rounded)	REQ.	c. wt. can	+ dry soil				20.19	18.90
50	2						d. wt. of w	vater (b - c)		(.	01 g)	2.21	1.51
37.52	1 1/2						e. wt. of c	an		(.	01 g)	10.21	10.28
31.5	1 1/4						f. wt. of dr	y soil (c - e)		,		9.98	8.62
25	1						g. Liquid	Limit(d/f x j x 1	00)	((0.1)	22.5	N.A.
19	3/4	0.0		100.0	100	100	h. Plastic	Limit (d/f x 10	00)	. ((0.1)	N.A.	17.5
16	5/8	108.6	2.0	98.0	98		i. P. I. (g	g-h)		((0.1)	5	.0
12.5	1/2	477.5	8.8	89.2	89	70-98	Liquid I	Limit (g rounde	d)			23	N.A.
9.5	3/8	464.2	8.5	80.7	81		Plastici	ty Index (i rour	nded)			(:	5)
6.3	1/4	529.5	9.7	71.0	71		j. corr.#b	lows	28 22	= 0.9846, 23 = 0	.9899, 24 0.	9952	
4.75	#4	296.6	5.5	65.5	66	50-78	25 = 1.000	0, 26 = 1.0050, 2	27 = 1.0100,	28 = 1.0138			
	PAN	3557.8	65.5	wt. before w	ashing(0.1 g)		wt #40	190.0	÷ wt#	4 3	43.9 x	% pass.#4 =	36.2%
TOTAL 5434.2				wt. after was	thing (0.1 g)			(±3.0% V/	ARIABLE of A	c. % pass. (0.1	1%) on the #	40)	
				loss from was	-	#VALUE!							
	radation check	·	0.01%	% -#200		#VALUE!		1		N L.L. max.			1
sieve s		Retained	% total		-	Acc.% pass.		SP	ECIFICATIO	N P.I. max.		************	6-12
mm	#	(0.1g)	ret. (0.1%)	pa.#4(0.1%)	(0.1%)	(rounded)	REQ.	r					\leq
2.36	8	66.8	13.3	8.7	56.8	57	37-67	+	#4 % PARTI	CLES LESS 1	THAN 1.95	SP.GR.	
2.00	10							Specific gravity of	•	± 0.01)			***
1.18	16	71.3	14.2	9.3	47.5	48		wt. of lightweigh	•			(0.1 g)	
0.85	20	70.4	450					weight of + #4 n				(0.1 g)	
0.60	30	79.4	15.8	10.3	37.2	37		% lightweight					######
0.43	40	29.6	5.9	3.9	33.3	33	13-35	SPECIFICATI	ON maximi	um			
0.30	50												
0.18	80							- i	#4 % PARTI	CLES LESS T	HAN 1.95	SP.GR.	
0.150	100	86.5	17.2	11.3	22.0	22		Specific gravity of	•	± 0.01)			
0.075	200	64.6	12.9	8.4	13.6	13.6		wt. of lightweigh	•			(0.1 g)	
PAN	dry	20.0	103.4	13.5		ashing(0.1 g)		weight of - #4				(0.1 g)	
PAN	wash	83.4	20.60			hing (0.1 g)		% lightweight p					#######
Coarse	TOTAL X %Retained/De	501.6		#VALUE!		ashing (- #200)		SPECIFICATION	ON maxim	um	···		
	X %Retained/Desi			#VALUE!	- #4 Grada within 0.3 %	ation check	0.08%		CDUC	HED DADTI	OL FO TE		
11163		total combined	1 - #200	#VALUE!			0.08%	usiaht af amaha		HED PARTI			1100.1
	Na.Rock	total combinet	3-17200	Na.Fines	WL Delote W	Cr.Fines		weight of crushe	•			(0.1 g)	1120.1
	Cr.Rock	-		Na. Sand	-	Ma.Sand		weight of total +				(0.1 g)	1586.2
	Filler	~		iva. Sailu		ivia.oanu		percent of crush SPECIFICA	•	20	•	(Whole)	71%
	1 11101							SPECIFICA	HON	30	or more FF,	min.	
сомм	ENTS:	Failed on	the Pl										


COUNTY	Fall River
PROJECT	17-701
BEI#	

	*											
SAMP	LE NO.	E NO. 2			DATE S	AMPLED	12-0	6-2017	DATE TES	STED	12-0	6-2017
SAMP	LED BY	Randy TESTED BY					Cha	ad Erk		CHECKED	BY	JHE
MATERIAL TYPE				Gravel S	Surfacing			URCE		Schumonic	-	
W	EIGHT TICK	ET NUMBE	R OR STA	TION			•			LIFT		
					-							
% mo	oist. = (wet wt.	5439.2	- dry wt.) /	dry wt. x 100) =	4.9%		L. L., P. I	L., and P. I.		L.L.	P.L.
OF	RIGINAL DRY S	AMPLE WT.	(0.1 g)	5186.2]	L	a. can nu		•		17	36
sieve si	ze	Retained	% total	Acc.% pass.	Acc.% pass.	SPEC	b. wt. can	n + wet soil		(.01 g)	21.01	18.75
mm	in	(0.1g)	ret. (0.1%)	(0.1%)	(rounded)	REQ.	c. wt. can	ı + dry soil		(.01 g)	18.60	17.57
50	2					ti Mari Ayri İye	d. wt. of v	water (b - c)		(.01 g)	2.41	1.18
37.52	1 1/2					in the State of	e. wt. of c	an		(.01 g)	10.22	10.21
31.5	1 1/4					and the	f. wt. of di	ry soil (c - e)		(.01 g)	8.38	7.36
25	1					-asin iya	g. Liquid	d Limit(d/f x j x 10	0)	(0.1)	28.5	N.A.
19	3/4	0.0		100.0	100	100	h. Plasti	c Limit (d/f x 100))	(0.1)	N.A.	16.0
16	5/8	85.2	1.6	98.4	98	$g(k) = g_k(\hat{\chi})$	i. P. l. (g	g - h)		(0.1)	1:	2.5
12.5	1/2	364.2	7.0	91.4	91	70-98	Liquid I	Limit (g rounded)		29	N.A.
9.5	3/8	496.6	9.6	81.8	82	w Carley Sa St.	Plastici	ity index (i round	led)		(1	3)
6.3	1/4	584.3	11.3	70.5	71	Alberton (j. corr.#b	olows	23 22 = 0.984	6, 23 = 0.9899, 2	4 0.9952	_
4.75	#4	357.0	6.9	63.6	64	50-78	25 = 1.000	00, 26 = 1.0050, 27	= 1.0100, 28 = 1	.0138		
	PAN	3298.7	63.6	wt. before w	ashIng(0.1 g)		wt #40	146.7	÷ wt #4	434.1	x % pass.#4 = .	21.5%
•	TOTAL	5186.0		wt. after was	hing (0.1 g)			(±3.0% VAF	RIABLE of Acc. % p	ass. (0.1%) on t	he #40)	
				loss from was	٠ .	#VALUEI						
	adation check		0.00%	% -#200		#VALUE!		1	CIFICATION L.L.			~
sieve siz	ze #	Retained (0.1g)	% total		Acc.% pass.	•	SPEC.	SPEC	CIFICATION P.I.	max.	·	<u>(6-12)</u>
2.36	8	99.6	ret. (0.1%) 19.5	pa.#4(0.1%) 12.4	(0.1%) 51.2	(rounded)	REQ.		· · · · · · · · · · · · · · · · · · ·			\leq
2.00	10	99.0	15.5	12.4	31.2	31	37-67	1	4 % PARTICLES		.95 SP.GR.	
1.18	16	98.0	19.2	12.2	39.0	39		Specific gravity of s	•)	(0.4)	
0.85	20	50.0	13.2	12.2	33.0	- 55	8489.	wt. of lightweight p			(0.1 g)	
0.60	30	90.1	17.6	11.2	27.8	28		weight of + #4 ma % lightweight pa			(0.1 g)	######
0.43	40	29.9	5.9	3.8	24.0	24	13-35	SPECIFICATIO				***************************************
0.30	50	20.0	0.0	3.0	24.0		10-00	SPECIFICATIO	iv maximum			
0.18	80											
		70.4	444			4 =		1	% PARTICLES		.95 SP.GR.	
0.150	100	72.1	14.1	9.0	15.0	15		Specific gravity of s	•)		
0.075	200	41.3	8.1	5.2	9.8	9.8	4.0-15.0	wt. of lightweight p			(0.1 g)	
PAN PAN	dry wash	13.9 65.5	79.4	9.9	wt. before wa			weight of - #4 m			(0.1 g)	
PAIN	TOTAL	510.4	15.54		wt. after was			% lightweight pa				######
Coarse	X %Retained/De			#VALUE!		shing (-#200) Ition check		SPECIFICATIO	N maximum			
	X %Retained/Desi			9.88	within 0.3 %		0.10%		CRUSHED	PARTICLES	TEST	
		total combined	i - #200	#VALUE!	wt. before w		0.1070	weight of crushed		MICHOLLO	(0.1 g)	1045.9
	Na.Rock	_		Na.Fines	_	Cr.Fines		weight of total + #	•		(0.1 g)	1538.1
	Cr.Rock	_		Na. Sand		Ma.Sand		percent of crushed	•		(%Whole)	68%
	Filler							SPECIFICATI	•	or more	, ,	<u></u>
СОММЕ	NTS:	Failed on	the PI									

COUNTY	Fall River	
PROJECT	17-701	
BEI#		

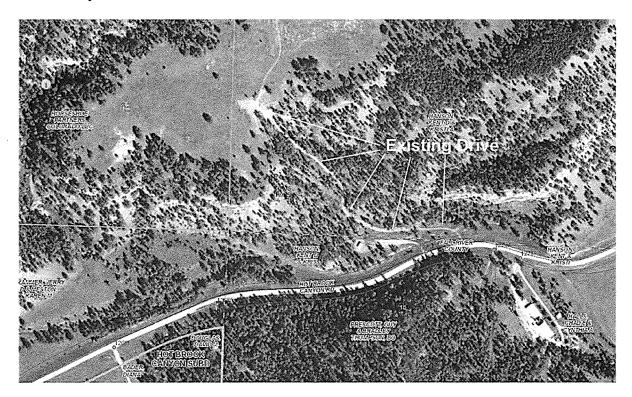
	Ψ .												
SAME	PLE NO.	-	3		DATE S	SAMPLED	12-1	2-2017	DA	TE TESTE	D	12-1	3-2012
SAMP	LED BY	Ra	andy	TESTED BY			Cha	ad Erk		СН	ECKED		JHE
MATE	RIAL TYPE			Gravel	Surfacing	***********	sc	OURCE Schumonic					
٧	VEIGHT TICK	ET NUMBI	R OR STA	ATION			-				FT		·····
								***************************************		L.		-	
% m	oist. = (wet wt.	6091.6	- dry wt.) /	dry wt. x 10	0 =	5.3%		L. L.	, P. L., and	d P. I.	······································	L.L.	P.L.
0	RIGINAL DRY S	AMPLE WT	. (0.1 g)	5784.7	1		a. can nu		•			3	12
sieve s		Retained	% total	Acc.% pass	. Acc.% pass	. SPEC	b. wt. car	n + wet soil			(.01 g)	22.91	20.76
mm	in	(0.1g)	ret. (0.1%)	(0.1%)	(rounded)	REQ.	c. wt. car	ı + dry soil			(.01 g)	19.82	19.32
50	2		ļ		<u> </u>	<u> </u>	d. wt. of	water (b - c)			(.01 g)	3.09	1.44
37.52	1 1/2				<u> </u>		e. wt. of o	can			(.01 g)	11.39	11.34
31.5	1 1/4						f. wt. of d	lry soil (c - e)			(.01 g)	8.43	7.98
25	1			100.0	100		g. Liquid	d Limit(d/f x	j x 100)		(0.1)	37.0	N.A.
19	3/4	9.9	0.2	99.8	100	100	h. Plasti	ic Limit (d/f	x 100)		(0.1)	N.A.	18.0
16	5/8	70.2	1.2	98.6	99		i. P. l. (g-h)			(0.1)		9.0
12.5	1/2	326.4	5.6	93.0	93	70-98	Liquid	Limit (g rou	nded)		(/	37	N.A.
9.5	3/8	397.9	6.9	86.1	86		Plastic	ity Index (i ı	ounded)			<u></u>	19 7
6.3	1/4	455.4	7.9	78.2	78		j. corr.#1			2 = 0.9846, 23	= 0.9899.		
4.75	#4	364.0	6.3	71.9	72	50-78	25 = 1.000	00, 26 = 1.00	50, 27 = 1.0100				
	PAN	4160.8	71.9	wt. before w	rashing(0.1 g)		wt #40	184.3	÷ wt.		369.2	x % pass.#4 =	35.9%
	TOTAL	5784.6		wt. after wa	shing (0.1 g)		1	(±3.0°	% VARIABLE of	Acc. % pass.	(0.1%) on		
				loss from wa	-	#VALUE!					·		
	radation check		0.00%	% -#20		#VALUE!			SPECIFICATI	ON L.L. ma	x.		-
sieve si mm	ze #	Retained	% total		Acc.% pass.	-			SPECIFICATI	ON P.I. max	ζ.		<u>(6-12</u>)
2.36	8	(0.1g)	ret. (0.1%)	pa.#4(0.1%)	(0.1%)	(rounded)	REQ.	7					
2.00	_	69.8	13.2	9.5	62.4	62	37-67		+ #4 % PAR	TICLES LES	S THAN	1.95 SP.GR.	***
	10	740						Specific grav	ity of solution (1.	95 ± 0.01)			
1.18	16	74.0	14.0	10.1	52.3	52		wt. of lightwo	eight particles			(0.1 g)	
0.85	20							weight of + #	#4 material			(0.1 g)	
0.60	30	78.3	14.8	10.6	41.7	42		% lightweig	tht particles				######
0.43	40	33.3	6.3	4.5	37.2	37	13-35	SPECIFICA	ATION maxir	num			
0.30	50		***************************************										
0.18	80								- #4 % PAR	TICLES LES	S THAN 1	.95 SP.GR.	
0.150	100	102.5	19.4	13.9	23.3	23		Specific gravi	ty of solution (1.	95 ± 0.01)			7.5
0.075	200	54.0	10.2	7.3	16.0	16.0	4.0-15.0	1	eight particles	,		(0.1 g)	
PAN	dry	14.0	117.1	15.9	wt. before w	ashing(0.1 g)	528.8	weight of -	#4 material			(0.1 g)	
PAN	wash	103.1	22.14		wL after was	hing (0.1 g)		% lightweig				(0.19)	######
	TOTAL	529.0	· · · · · · · · · · · · · · · · · · ·		loss from w	ashing (- #200)	103.1		ATION maxis	mum			111111111
Coarse	_X %Retained/De	-		#VALUEI	- #4 Grada	tion check							
Fines	X %Retained/Desi			15.92	within 0.3 %	of the	-0.04%		CRU	SHED PAR	TICLES	TEST	***************************************
		total combined	- #200	#VALUE!	wt. before w			weight of cru	shed pieces			(0.1 g)	947.9
	Na.Rock	-		Na.Fines	-	Cr.Fines			al + #4 sample			(0.1 g)	1528.9
	Cr.Rock Filler	-		Na. Sand	***********	Ma.Sand			ushed pieces			(%Whole)	62%
	rner			······································				SPECIFI	CATION	<u>30</u>	or more	FF, min.	
COMME	ENTS:	Out on the	#40 #200	R the ₽I									
	-		, "200	, w and t I						······································			



COUNTY	Fall River
PROJECT	17-701
BEI#	

SAMP	LE NO.		4		DATES	AMPLED	12-14	14-2017 DATE TESTED 12-15				5-2017
SAMP	LED BY	Ra	ndy	TEST	FED BY		Chad Erk CHECKED BY			BY	JHE	
MATE	RIAL TYPE			Gravel S	Surfacing		SOURCE			Schumonic	Pit	
V	VEIGHT TICK	ET NUMBE	R OR STA	TION			•			LIFT		
% m	oist. = (wet wt.	5684.2	- dry wt.) /	dry wt. x 100	=	3.5%		L. L.,	P. L., and P. I.		L.L.	P.L.
O	RIGINAL DRY S	AMPLE WT.	(0.1 g)	5494.2			a. can nu	mber			17	36
sieve s		Retained	% total	Acc.% pass.	•		b. wt. can	+ wet soil		(.01 g)	21.74	18.85
mm	in	(0.1g)	ret. (0.1%)	(0.1%)	(rounded)	REQ.	c. wt. can	•		(.01 g)	19.73	17.50
50	2							vater (b - c)		(.01 g)	2.01	1.35
37.52	1 1/2						e. wt. of c			(.01 g)	10.22	10.21
31.5	1 1/4						f. wt. of dr	ry soil (c - e)	•	(.01 g)	9.51	7.29
25	1	0.0					g. Liquid	Limit(d/f x j	x 100)	(0.1)	20.3	N.A.
19	3/4	0.0		100.0	100	100	h. Plastic	c Limit (d/f	c 100)	(0.1)	N.A.	18.5
16	5/8	80.4	1.5	98.5	99	要是 新國	i. P. l. (g	g - h)		(0.1)	1	.8
12.5	1/2	304.3	5.5	93.0	93	70-98	Liquid I	Limit (g rou	nded)		20	N.A.
9.5	3/8	322.9	5.9	87.1	87	Salasia.	Plastici	ty Index (i r	ounded)	:	(:	2)
6.3	1/4	484.5	8.8	78.3	78	24-8-195-15	j. corr.#b	olows	18 22 = 0.984	6, 23 = 0.9899, 2	4 0.9952	
4.75	#4	294.2	5.4	72.9	73	50-78	25 = 1.000	0, 26 = 1.005	0, 27 = 1.0100, 28 = 1	.0138		
	PAN	4008.1	73.0	wt. before w	ashing(0.1 g)		wt #40	124.3	÷ wt #4	409.3	x % pass.#4 =	22.1%
	TOTAL	5494.4		wt. after was	hing (0.1 g)			(±3.0°	% VARIABLE of Acc. %	oass. (0.1%) on t	he #40)	
				loss from was	-	#VALUE!						
	radation check		0.00%	% -#200		#VALUE!			SPECIFICATION L.L			
sieve si	ze #	Retained	% total		-	Acc.% pass.			SPECIFICATION P.I.	. max.		<u>(6-12</u> /
mm		(0.1g)	ret. (0.1%)	pa.#4(0.1%)	(0.1%)	(rounded)	REQ.					
2.36	8	102.9	19.7	14.4	58.5	59	37-67		+#4 % PARTICLES		.95 SP.GR.	
2.00	10							1 .	ty of solution (1.95 ± 0.0)	1)		
1.18	16	120.6	23.1	16.8	41.7	42		1 -	eight particles		(0.1 g)	
0.85	. 20							weight of + #	4 material		(0.1 g)	
0.60	30	96.5	18.5	13.5	28.2	28		% lightweig	ht particles			######
0.43	40	28.0	5.4	3.9	24.3	24	13-35	SPECIFICA	ATION maximum			1.0
0.30	50											
0.18	80						i de la companya de l		-#4 % PARTICLES	LESS THAN 1.	.95 SP.GR.	
0.150	100	58.9	11.3	8.2	16.1	16	1 48	Specific gravi	ty of solution (1.95 ± 0.01)	1)		2 - 22
0.075	200	39.7	7.6	5.5	10.6	10.6	4.0-15.0	wt. of lightwe	eight particles		(0.1 g)	
PAN	dry	11.4	76.0	10.6	wt. before w	ashing(0.1 g)	522.7	weight of -	#4 material		(0.1 g)	
PAN	wash	64.6	14.54		wt. after was	hing (0.1 g)	458.1	% lightweig	ht particles			######
	TOTAL	522.6			loss from w	rashing (- #200)	64.6	SPECIFICA	ATION maximum			
Coarse_	_X %Retained/De	sign=		#VALUE!	- #4 Grad	ation check	(
Fines	X %Retained/Des			10.60	within 0.3 %		0.02%			PARTICLES	TEST	
		total combine	d - #200		wt. before v			4 ~	shed pieces		(0.1 g)	995.8
	Na.Rock	-		Na.Fines	-	Cr.Fines	-	1 -	al + #4 sample		(0.1 g)	1486.3
	Cr.Rock	-		Na. Sand		Ma.Sand		£.	ushed pieces		(%Whole)	67%
сомм	Filler ENTS:	PI is out						SPECIFI	CATION 30	or more	rr, min.	

APPLICATION OF HORSESHOE PARTNERS COLORADO, LLC FOR A RIGHT-OF-WAY PURSUANT TO SDCL 31-22-2


1. Horseshoe Partners Colorado, LLC ("Horseshoe Partners") is the owner of the real property depicted immediately below.

"Horseshoe Property."

- 2. The Horseshoe Property consists of approximately 55 Acres.
- 3. The Horseshoe Property is located in Fall River County, South Dakota. The Fall River County Board of Commissioners has jurisdiction to hear the Horseshoe Application and decide if the Horseshoe property is an isolated tract of land.
- 4. Horseshoe submits this Application to the Board pursuant to SDCL 31-22-2.
- 5. The Horseshoe Property is an isolated tract of land, as defined by SDCL 31-22-1 Right to Access from Isolated Tract to Highway.
- 6. The Horseshoe Property is land-locked to the North, South, East and West.
- 7. Due to steep terrain and a cliff face, the Horseshoe Property cannot be accessed via the section line between Section 9 and Section 10, T7S, R5E, BHM. No means of access exist, and the Horseshoe Property is an Isolated Tract as defined by law because a passable road cannot be built within the adjoining section line to connect to a passable highway.

- 8. Pursuant to SDCL 31-22-1, the Horseshoes property is an isolated tract of land containing at least ten acres not touched by a passable public highway.
- 9. Pursuant to SDCL 31-22-1, this isolated tract is further defined as an area which is either inaccessible by motor vehicle because of natural barriers from all other land owned by the owner of the isolated tract or is such an area which is not touched by a passable public highway, which is in use or reasonably usable for motor vehicles.
- 10. An existing private road exists and extends from Hot Brook Canyon Road to the Eastern side of the Horseshoe Property, located generally in the SW ¼ of the SW ¼ of Section 10 T7S, R53, BHM. ("Existing Drive").
- 11. The Existing Drive and its location in reference to the Horseshoe Property are set forth immediately below:

- 12. Horseshoe Partners, pursuant to SDCL 31-22-2, hereby identifies that it desires an easement over and upon the location of the Existing Drive. The Existing Drive is located on real property owned by Kent Hanson and Kristi Hanson.
- 13. Pursuant to SDCL 31-22-1, Horseshoe Partners sent the letter attached as **Exhibit A** to Kent Hanson and Kristi Hanson in the attempt to obtain an easement for the benefit of the Horseshoe Property over and upon the Existing Drive. Undersigned on behalf of Horseshoe Partners and Mr. Kent Hanson spoke on the telephone regarding attempts by Horseshoe Partners to purchase an easement from the Hanson's. The parties were unable to agree on the purchase of

an easement by Horseshoe Partners from the Hanson's. The Hanson's oppose any easement over any portion of their property for the benefit of the Horseshoe Property.

- 14. Pursuant to SDCL 31-22-3, the Board of County Commissioners shall consider the convenience of the parties in establishing the location of any right-of-way. The convenience of the parties and minimal cost, impact, and impairment, will occur by finding and declaring the location of the right-of-way over and upon the location of the Existing Drive.
- 15. Horseshoe Partners requests that pursuant to SDCL 31-22-2, that the Fall River County Board of Commissioners, cause written notice to be served upon the owner or owners of such surrounding land, giving notice of when such Board will visit such land and lay out one right-of-way across such surrounding land, and assess the damages therefor, which notice shall be served at least five days prior to the date set for such visit and appraisal.
- 16. The owners of such surrounding land, as contemplated by SDCL 31-22-2 and SDCL 31-22-3, include Kent Hanson and Kristi Hanson. Mr. Hanson has advised that Rocky Mountain Elk Foundation may have rights or interests in the Hanson's property via a conservation easement.
- 17. Horseshoe Partners requests that the Fall River County Board of County Commissioners set the visit to such land to take place within thirty (30) days of the date of this Application.
- 18. At, or following the visit to land and determination of the appropriate location of right-of-way, of not less than twenty-five feet nor more than sixty-five feet, that the Board of County Commissioners shall assess and determine the damage which the right-of-way is to the owners of the land across which it is laid.
- 19. Horseshoe Partners requests that the Board find, conduct, and perform such further and other actions as are required under SDCL 31-22-1 *et. seq.*

Respectfully submitted this 3 day of February, 2018

Douglas Norberg, Esq., Manager

HORSESHOEPARTNERS COLORADO. LLC

8480 E. Orchard Road, Suite 5000

Greenwood Village, CO 80111

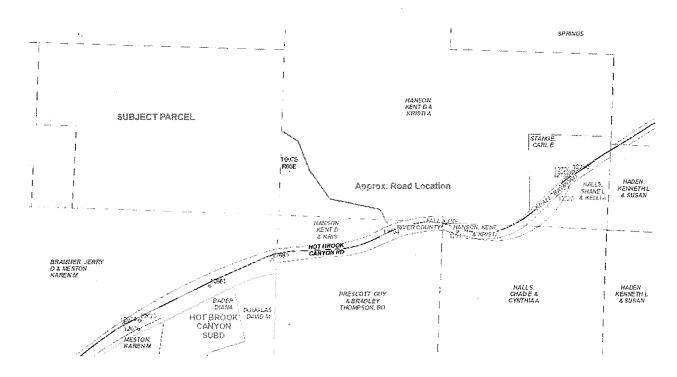
303-522-6986

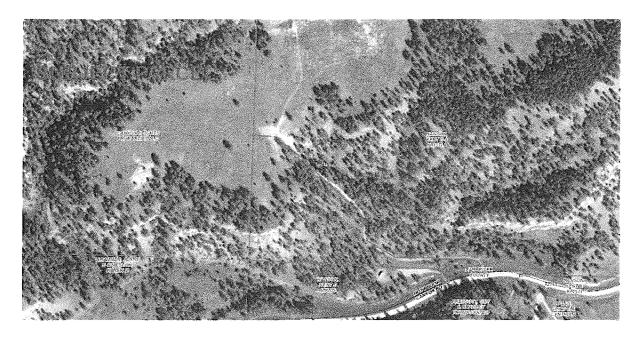
dnorberg@gelmannorberg.com

HORSESHOE PARTNERS COLORADO, LLC

2943 E. Otero Circle Centennial, CO 80122 303-522-6986

DOUGLAS NORBERG, ESQ.


DBN.ESQ@GMAIL.COM


December 17, 2017

Kent Hanson Kristi Hanson 12756 Hot Brook Canyon Road Hot Springs, South Dakota, 57747-0000

Dear Mr. and Mrs. Hanson:

Horseshoe Partners Colorado, LLC is the owner of the subject parcel depicted below ("Subject Parcel"). As the new owner of the property, we are reaching out to you to discuss the possibility of an easement for purposes of ingress and egress to the Subject Parcel via the existing drive across your property (indicated by red line below):

The Subject Parcel identified above is land-locked and there is no other reasonable means of ingress or egress. Accordingly, we are hopeful that we can reach an agreement with you regarding access.

Per South Dakota statute, "every owner of an isolated tract of land containing at least ten acres not touched by a passable public highway...is entitled to an easement or right-of-way across adjacent lands to reach a public highway, which easement or right-of-way may be secured as provided in this chapter." SDCL 31-22-1. This chapter of South Dakota law provides the method for obtaining an access easement. It states that if no agreement can be reached with the adjacent landowners, the Board of County Commissioners will visit the site and determine the location of the easement. See SDCL 31-22-2 and 31-22-3. Accordingly, we are reaching out to you in hopes that we can reach a mutually satisfactory agreement regarding access without resorting to the statutory process.

I am anticipating being in Hot Springs shortly after Christmas and, if that works, would welcome an opportunity to meet with you to discuss in person.

Please contact me at your earliest convenience to discuss the matters set forth above, or hopefully, coordinate a meeting. I can be reached by email at dbn.esq@gmail.com or 303-522-6986.

Kent and Kristi Hanson December 17, 2017 Page 3 of 3

Thank you in advance.

Very truly yours,

HORSESHOE PARTNERS COLORADO, LLC

Douglas Norberg, Member / Manager

Get Statute Get Chapter @

Printer Friendly (/Statutes/PrinterStatute.aspx?Type=Statute&Statute=31-22-2) 31-22-2. Inability to agree with servient landowner--Application to board of county

commissioners--Contents of application--Notice to servient landowner--Contents of notice--Service of notice. If the owner of such an isolated tract is unable to agree with the owner of surrounding lands for purchase of a right-of-way from such isolated tract of land to a public highway, he may apply to the board of county commissioners for relief, making his application in writing and describing the isolated tract and the surrounding land over which a right-of-way is desired. The county commissioners shall thereupon cause to be served upon the owner or owners of such surrounding land a notice in writing of a time when such board will visit such land and lay out one right-of-way across such surrounding land, and assess the damages therefor, which notice shall be served at least five days prior to the date set for such visit and appraisal.

Source: SL 1935, ch 179, § 2; SDC 1939, § 28.0802.

Get Chapter 31-22 (/Statutes/Codified_Laws/DisplayStatute.aspx? Type=StatuteChapter&Statute=31-22) Back to Chapter 31-22 (DisplayStatute.aspx?Statute=31-22&Type=Statute)

LEGISLATIVE RESEARCH COUNCIL 500 EAST CAPITOL AVENUE PIERRE, SD 57501

Press Releases (/Legislative_Session/General/PressReleases.aspx)
Careers (/Careers/)
Contact Us (/Contact/)

© 2018 - SD LEGISLATIVE RESEARCH COUNCIL LRC HOMEPAGE (HTTP://SDLEGISLATURE.GOV) | SD HOMEPAGE (HTTP://SD.GOV)

Get Statute Get Chapter 2

Printer Friendly (/Statutes/PrinterStatute.aspx?Type=Statute&Statute=31-22-1)

31-22-1. Right to access from isolated tract to highway. Every owner of an isolated tract of land containing at least ten acres not touched by a passable public highway or smaller tract of land containing at least five acres used or intended to be used in good faith in whole or in part for residential purposes is entitled to an easement or right-of-way across adjacent lands to reach a public highway, which easement or right-of-way may be secured as provided in this chapter. An isolated tract is further defined as an area which is either inaccessible by motor vehicle because of natural barriers from all other land owned by the owner of the isolated tract or is such an area which is not touched by a passable public highway, which is in use or reasonably usable for motor vehicles. A tract of land adjoining a section line right-of-way for at least sixty-six feet is not an isolated tract if a passable road can be built within the adjoining section line to connect to a passable public highway.

Source: SL 1935, ch 179, § 1; SDC 1939, § 28.0801; SL 1955, ch 101; SL 1970, ch 161; SL 2004, ch 198, § 1.

Get Chapter 31-22 (/Statutes/Codified_Laws/DisplayStatute.aspx? Type=StatuteChapter&Statute=31-22) Back to Chapter 31-22 (DisplayStatute.aspx?Statute=31-22&Type=Statute)

LEGISLATIVE RESEARCH COUNCIL 500 EAST CAPITOL AVENUE PIERRE, SD 57501

PRESS RELEASES (/LEGISLATIVE_SESSION/GENERAL/PRESSRELEASES.ASPX)
CAREERS (/CAREERS/)
CONTACT US (/CONTACT/)

© 2018 - SD LEGISLATIVE RESEARCH COUNCIL LRC HOMEPAGE (HTTP://SDLEGISLATURE.GOV) | SD HOMEPAGE (HTTP://SD.GOV)

TIMELINE:

Summer 2014 – AG Land Review – Forms were sent out to all AG land owners. If we did not receive an AG form by the deadline, we changed the land to Non-AG status.

OST did not return AG form by deadline – DOE changed all 5 parcels to Non-AG status

March 1, 2015 - Assessment Notices sent out. - all 5 parcels were classed as Non-AG

No Appeal was filed by the OST to dispute the land values or classification

January, 2016 – Wild Horse Sanctuary called about the increase in the 2015 pay 2016 tax bill. They informed the DOE that as part of the lease agreement they had with OST, the horse sanctuary was responsible for paying the taxes. The DOE informed them that we had not received an AG form from the OST and that the AG status was removed.

March 1, 2016 - Assessment Notices sent out. - all 5 parcels were classed as Non-AG

No Appeal was filed by the OST to dispute the land values or classification

July 8, 2016 – DOE received a copy of the AG form from OST

July 19, 2016 – ABATEMENT request was filed by the OST for the 2015 pay 2016 tax bill to be adjusted for the difference between Non-AG and AG status. The Commissioners agreed to the ABATEMENT with the condition the DOE received a copy of the new lease agreement.

Minutes from the Commissioner Meeting July 19, 2016:

Denise Mesteth, Oglala Sioux Tribe Land Director, met with the Board to discuss abatement of taxes for Oglala Sioux Tribal owned land in Fall River County at the Wild Horse Sanctuary. Mesteth explained that they had an agreement with the Sanctuary that they pay the taxes for use of the land. An Agriculture land Audit had been sent to the tribe, which was not returned so the status of the land changed to non-Ag status. Mark Van Orman, Attorney explained that the agreement had been an ongoing agreement and that a new draft was being drawn up. Motion by Russell, seconded by Ortner to approve abatements and refunds for pay 2016 taxes as follows: parcel 19000-00804-18200, abatement - \$637.02, refund - \$517.95; 19000-00804-20100, abatement - \$1,877.45, refund - \$1,269.52; 19000-00804-20300, abatement - \$1,877.45, refund - \$1,362.82; 19000-00804-21200, abatement - \$904.27, refund - \$759.07; 19000-00804-28100, abatement \$1,808.53, refund - \$1,358.75. Reason - form returned and use qualifies for ag status. Falkenburg asked that a copy of the new lease agreement be supplied to the Director of Equalization within one month. Mesteth spoke to the Board and

believes that all land owned by the tribe should be tax exempt to learn tribal history. The Board feels taxed should be paid in Fall River County, so this could be a future issue.

October 18, 2016 – DOE informed the Commissioners we did not receive a lease agreement from OST yet. Commissioners advised DOE to keep classification as Non-AG for 2017 assessment.

Minutes from the Commissioner Meeting October 18, 2016:

Denise Mesteth of the Oglala Sioux Tribal Land Office did not appear for their 10:35 appointment.

Susie Simkins, Director of Equalization presented the Board a list with possible changes to abstracts. Simkins suggested changes now rather than abatements in the next fiscal year... ... Motion by Falkenburg, seconded by Russell to leave property owned by the Oglala Sioux Tribe as Non Ag as requested information has not been turned in.

February 27, 2017 – DOE received Lease Agreement from OST

Resolution No. 16-110 from Tribal Council – signed and dated 8-23-2016

Lease Agreement – signed and dated 1-11-2017

March 1, 2017 - Assessment Notices sent out. - all 5 parcels were classed as Non-AG

March 21, 2017 – ABATEMENT request was filed by the OST for the 2016 pay 2017 tax bill to be adjusted for the difference between Non-AG and AG status. The Commissioners denied this ABATEMENT request.

Minutes from the Commissioner Meeting March 21, 2017:

Mark Van Orman, OST Attorney, Chauncey Wilson, Tribal Councilman, Trudee Ecoffee, NRCS representative and Michael Her Many Horses met with the board to request abatements to their pay '17 tax bills to reflect agriculture status rather than non-ag on their 1247 acres they lease to the Institute of Range and the American Mustangs, (BH Wild Horse Sanctuary). Van Orman stated that the land has always been used as agriculture by grazing cattle, and is used for their winter pasture, and Her Many Horses spoke of the cultural and spiritual uses. Discussion was held on fencing of the area, and the assistance they are getting from the NRCS and whether or not it was used for ag purposes. Van Orman also noted they will ask for exempt status in the future. Motion made by Allen, seconded by Russell to approve abatement to reflect agriculture status. Discussion was held with Nabholz speaking of an issue with the timeline, reassurance

from Her Many Horse that there was a fence, and paperwork is now filed. By roll call vote, Russell and Allen voting yes, all others voting no, motion failed.

April 4, 2017 – DOE received appeal request forms from OST to appeal the classification on all 5 parcels.

SOUTH DAKOTA DEPARTMENT OF GAME, FISH AND PARKS

523 EAST CAPITOL AVENUE | PIERRE, SD 57501

January 4, 2018

Fall River County Commissioners 906 N River Hot Springs SD 57747

Dear County Commissioners.

Every county in South Dakota contributes to the state Animal Damage Control fund, per SDCL 40-36-11. These funds are combined with additional funding provided by South Dakota Game, Fish and Parks' (GFP) to operate its comprehensive Wildlife Damage Management (WDM) program. Please find the enclosed program report for GFP's WDM program for fiscal year 2017. This report highlights the important work our wildlife damage staff completed this past year, in cooperation with many private landowners/producers across South Dakota. I hope this report gives you a good understanding of our efforts regarding the assistance we provide to private landowners/producers to reduce impacts caused by wildlife. If you'd like a GFP representative to visit with your commission regarding topics within this report, please let me know and we can have that arranged. This report can also be viewed online at the following location:

http://gfp.sd.gov/wildlife/docs/wildlife-damage-report.pdf

If you have any questions or would like more information about GFP's WDM program, please feel free to contact me directly at (605.773.7595).

Best Regards,

Keith Fisk

Wildlife Damage Program Administrator

REGISTRATION FORM FOR OPTIONAL FIELD SEMINARS/TRIPS 2018 Western South Dakota Hydrology Meeting April 20, 2018

(final details on field trips will be sent to registered participant's email, and posted on the website in early April)

Optional free field seminars/trips are being offered on a first-come, first-serve basis as part of the 2018 Western South Dakota Hydrology Conference. Professional development hours (PDHs) are available for the lecture portion of the field seminars/trips. To be eligible for these field seminars/trips, you must be pre-registered for the conference. Also, you must provide your own transportation to and from the site locations. Please select only 1 of the following:

Name	
-	Field trip #1: Tour of South Dakota School of Mines and Technology campus and laboratories
	Description: Tour of various departments and facilities at SDSMT, visit with faculty about research projects, explore recently-completed building renovations.
	Maximum attendees: 25
	Leader: Galen Hoogestraat (USGS) and various SDSMT faculty
	Meeting time: 8:30 to 11:30 a.m.
	Meeting location: 8:30 a.m., SDSMT campus TBD
	Duration: 3.0 hours (3.0 PDH)
***************************************	Field trip #2: Rapid Creek in-stream fish habitat improvement projects
	Maximum attendees: 25
	Description: Visit stream habitat improvement projects completed by SD Game, Fish, and Parks, in Rapid Creek between Pactola Dam and Rapid City
	Leaders: Jake Davis and John Carriero (South Dakota Department of Game, Fish, and Parks)
	Meeting time: 8:30 a.m.
	Meeting location: TBD
	Duration: 3 hours (3.0 PDH)
	Field trip #3: Jewel Cave National Monument geology tour
	Note: This field trip is not yet confirmed – in the event it is cancelled and you'd like to attend a different field trip, please list an alternative field trip number here:
	Maximum attendees: 25
	Description: We will address the Jewei Cave fault and related geological features that led to the formation of Jewel Cave. Optional additional tour of Jewel Cave.
	Leaders: Mike Wiles (NPS – Jewel Cave National Monument)
	Meeting time: 8:00 a.m. (Rapid City area) or 9:00 a.m. at Jewel Cave visitor's center
	Meeting location: TBD
	Duration: 4 hours including travel (3.0 PDH)

REGISTRATION FORM

2018 Western South Dakota Hydrology Meeting April 19, 2018

With optional field seminars/trips on April 20, 2018 Rushmore Plaza Civic Center – Rapid City, South Dakota

Name (as you wish	it to appear on your badge):			
Affiliation:				
Address:				
	State	: Email	Zip:	
retephone:	ALLERA CHA SEA SEA SEA SEA SEA SEA SEA SEA SEA SE	Eman		71-70-14-1777-15-15-15-15-15-15-15-15-15-15-15-15-15-
Registration fees (P	Please circle the fee that applies to y	you and indicate your to	tal amount):	
		-	Total amount	
Category	Early-bird registration (before March 19)	Regular registration (after March 19)	Lunch ^c	· · · · · ·
Professional ^{a,b}	\$70	\$100	Included	
Student/General public	Free	Free	\$20 (optional)	
	ates that you are attending this meet areer through professional develops cludes lunch.			
^c Lunch will be buff	et-style.			
This form must be	received by April 11, 2018, to gu	arantee a lunch reserv	ation.	
No fees will be refu attend in your place	anded for cancellations after March	19, 2018. If you are un	able to attend, a su	ubstitute may
For payment by cl	neck, please make checks payable	to: Western South Da	kota Hydrology (Conference.
Mail to: Galen Ho	ogestraat, USGS, 1608 Mt. View	Road, Rapid City, SD	57702	
For payment by co	redit card, please fill out the follo	wing information:		•
Method of payment	:: Visa MasterCard Di	scover		
Name on credit care	d:	·		
Billing street addre	ss:			
	te			
Credit card number	•	Expiration Date	(MM/YYYY Forn	nat):
Amount to charge:	\$			
Signature:		······································		

(See next page for optional field seminar/trip registration)

2:30 — 2:50 p.m.	Christmas Lake dam hydraulic analysis and redesign—T.J. Yerdon and Dennis Reep, HDR Engineering, Inc.	Tritium and carbon-14 dates in the Madison limestone aquifer, Black Hills area, South Dakota - Perry Rahn, South Dakota School of Mines and Technology			
2:50 – 3:10 p.m.	Recollecting June 9, 1972: A personal chronicle – William J. Siok	Evaluation of streamflow depletion related to groundwater withdrawals in the Humboldt River Basin, Nevada – Bill Eldridge, Kyle Davis, Kip Allander, C. Justin Mayers, Cara Nadler, Murphy Gardner, and Michael Pavelko, USGS			
3:10 – 3:30 p.m.	REFRESHMENT BREAK in Rushmore G – Sponsored by TBD				
3:30 – 4:50 p.m. Concurrent Session 4A in Alpine F Geomorphology (1.5 PDH) Moderator – Lacy Pomarleau, RESPE		Concurrent Session 4P in Ponderosa Room – Hydrology Potpourri (1.5 PDH) Moderator – Janet Carter, U.S. Geological Survey			
3:30 – 3:50 p.m.	Developing a hydrologic model to study the effects of habitat restoration and the change in habitat on aquatic life — Mackenzie Kenney, Stu Geza, and Scott Kenner, SDSM&T, and Jake Davis, S.D. Department of GF&P	The complexity of water supply conveyances – Benjamin York and Kathleen Rowland, U.S. Geological Survey			
3:50 – 4:10 p.m.	Bank accretion in the Green River (Utah) downstream of the Flaming Gorge Dam and Yampa River confluence – David Waterman, South Dakota School of Mines and Technology	Subsurface cave detection in Wind Cave National Park using microgravity surveying techniques – Colton Medler and Bill Eldridge, U.S. Geological Survey			
4:10 – 4:30 p.m.	Comparison of geomorphic properties between functional process zones in the Great Basin – John Costello and Scott Kenner, SDSM&T, Nicholas Kotlinski, Chicago Field Museum, and James Thorp, University of Kansas	Site scale integrated decision support tool (i-DST) for stormwater management – Ali Shoajeizadeh and Stu Geza, SDSM&T, Colin Bell, Terri Hogue, John McCray, Colorado School of Mines			
4:30 — 4:50 p.m.	Natural flow regimes for the major rivers of the Arctic Ocean Basin, Mongolia, Battsengel Dashdorj, South Dakota School of Mines and Technology	Biofilm engineering approaches for improving performance of bioelectrochemical systems for bioremediation of industrial effluents — Navanietha Krishnaraj Rathinam and Rajesh K. Sani, South Dakota School of Mines and Technology			
5:00 – 7:30 p.m.	POSTER SESSION AND EVENING SOCIAL (with refreshments) in Rushmore G Sponsored by Energy Laboratories and Citizens Climate Education Moderator – Galen Hoogestraat, U.S. Geological Survey				
Modeling groundwater flow by coupling ensemble smoother and direct sampling method — Zhendan Co South Dakota School of Mines and Technology					
	Dynamics of temperature, flow, and thermal refuge with implications on fisheries and macroinvertebrates in Rapid Creek — Michaela Halvorson, Lisa Kunza, South Dakota School of Mines and Technology, and Jake Davis, SDGF&P				
	Determination of the potential for detection and monitoring of brine spills in rangeland using remote sensing – Patrick Kozak, Liangping Li, Bill Capehart, Heidi Sieverding, and James Stone, South Dakota School of Mines and Technology				
	Examining streamflow losses along White River near Oglala, South Dakota — Ryan Puzel, Liangping Li, and J. Foster Sawyer, South Dakota School of Mines and Technology				
	Investigating nutrient distribution and land use in the Kootenai River Basin — Emily Stickney and Lisa Kunza, South Dakota School of Mines and Technology				
	Water quality comparison of two water years at Niobrara National Scenic River - Darren Thornbrugh, National Park Service				
	Soil column experiment and modeling nitrogen fate and transport from on-site rural septic systems in the South Dakota, Black Hills Area — Raul Vasquez, South Dakota School of Mines and Technology				
	The impacts of land use and land cover change on water quality in the Big Sioux River:2007-2016 – Dinesh Shrestha, South Dakota State University				
	Genome to phenome relationships for improving the performance of bioelectrochemical systems – Navanietha Krishnaraj Rathinam, Pratha Sood, and Rajesh K Sani, South Dakota School of Mines and Technology				
	Fate and transport of antineoplastic agents: detoxification med Krishnaraj R, Dipayan Samanta, and Rajesh K Sani, South				

OPTIONAL FIELD SEMINARS/TRIPS - Friday, April 20, 2018

Times	Field Seminar/Trip	
8:30 – 11:30 a.m.	Tour of South Dakota School of Mines and Technology campus and laboratories - various faculty, SDSM&T (3.0 PDH)	
8:30 - 11:30 a.m.	Rapid Creek in-stream fish habitat improvement projects - Jake Davis and John Carriero, SDGFP (3.0 PDH)	
8:00 a.m. – 12:00 p.m.	Jewel Cave National Park geology tour - Mike Wiles, National Park Service (3.0 PDH)	

2018 WESTERN SOUTH DAKOTA HYDROLOGY CONFERENCE PROGRAM

Thursday, April 19, 2018 Alpine/Ponderosa Rooms and Rushmore F and G – Rushmore Plaza Civic Center

7:00 – 8:00 a.m.	REGISTRATION			
8:00 – 10:00 a.m.	Plenary Session 1 in Alpine and Ponderosa Rooms – Invited Speakers (1.5 PDH) Moderator – Joyce Williamson, U.S. Geological Survey			
8:00 – 8:10 a.m.	Welcome, general information	Joyce Williamson, U.S. Geological Survey		
8:10 – 8:20 a.m.	Opening remarks	James Rankin, President, South Dakota School of Mines and Technology		
8:20 – 9:00 a.m.	Groundwater quality and fracking: current understanding and science needs	Daniel Soeder, Energy Resources Initiative, South Dakota School of Mines and Technology		
9:00 – 9:30 a.m.	Facilitating tribal climate change adaptation planning and communicating climate change impacts in the Great Plains	James Rattling Leaf, Sr., Coordinator, Climate Partnerships - Great Plains Tribal Water Alliance		
9:30 – 10:00 a.m.	A brief status report - a changing climate	Alan D. Anderson, NOAA Commissioned Corps and U.S. Forest Service (Retired)		
10:00 – 10:20 a.m.	REFRESHMENT BREAK in Rushmore G – Sponsored by Citizens Climate Education			
10:20 a.m. – 12:00 p.m.	Concurrent Session 2A in Alpine Room – Changes and Discoveries (1.5 PDH) Moderator – Greg Delzer, U.S. Geological Survey	Concurrent Session 2P in Ponderosa Room – - Water Quality and Monitoring (1.5 PDH) Moderator – Megan Burke, RESPEC		
10:20 – 10:40 a.m.	Understanding the relation between energy and water in the Williston Basin - Joanna Thamke, U.S. Geological Survey	The impact of mountain pine beetle infestation on surface water quality within the Upper Rapid Creek watershed of the Black Hills National Forest – Jesse Punsal, James Stone, Heidi Sieverding, and Scott Kenner, SDSM&T, Chuck Rhoades and Timothy Fegel, U.S. Forest Service		
10:40 — 11:00 a.m.	Using multi-physics and multi-model regional climate model ensembles to assess climate resiliency in the Great Plains – Bill Capehart, South Dakota School of Mines and Technology	Blue Dog State Fish Hatchery (SFH) water quality improvements Allan Erickson, HDR Engineering, Inc.		
11:00 – 11:20 a.m.	Change-point analysis for nationwide peak streamflow – Karen Ryberg, Glenn Hodgkins, and Robert Dudley, U.S. Geological Survey	Environmental monitoring: applying advancements in instrumentation to overcome unique challenges – Pete Rausch, RESPEC		
11:20 – 11:40 a.m.	Using surface and subsurface geology to estimate the true elevation of subterranean lakes at Jewel Cave, South Dakota – Mike Wiles, Eric Fiorentino, Gabriella Cerrati, Erin Hayward, Jewel Cave National Monument, and Daniel Heins, University of Chicago	Rapid deployable real-time monitoring technology For water resource data collection – Dave Hisz, North Dakota State Water Commission		
11:40 — 12:00 p.m.	Modeling the hydrological impact of a dynamic land cover change for the Black Hills mountain pine beetle outbreak - Patrick Shaw, Scott Kenner, James Stone, and Heidi Sieverding, South Dakota School of Mines and Technology	The path forward – insight from directed stakeholder discussion at the 2017 Eastern South Dakota Water Conference – John McMaine, David Kringen, and Rachel McDaniel, South Dakota State University		
12:00 p.m. – 1:30 p.m.	LUNCH in Rushmore F Room (1.0 PDH) — with accompanying presentations RESPEC: Jason Love John T. Loucks Distinguished Lecture — "Colorado Springs utilities water treatment section response to the Waldo Canyon Fire" by Jeff Crockett, City of Rapid City Water Superintendent			
1:30 – 3:10 p.m.	Concurrent Session 3A in Alpine Room – Emergency Response (1.5 PDH) Moderator – Melissa Smith, NOAA/National Weather Service	Concurrent Session 3P in Ponderosa Room – Groundwater (1.5 PDH) Moderator – Joanne Noyes, South Dakota Department of Environment and Natural Resources		
1:30 — 1:50 p.m.	Municipal watershed wildfire hazard mitigation assessments – Megan Burke, RESPEC	Groundwater conditions in the Ararat Basin in Armenia—Janet Carter, Josh Valder, and Mark Anderson, U.S. Geological Survey		
1:50 – 2:10 p.m.	Waldo Canyon Fire impacts to US 24 & emergency response plan – Richard Ommert and Dorothy Eisenbraun, RESPEC	Airborne electromagnetic (AEM) surveys of buried aquifer deposits in North Dakota, Rex Honeyman, North Dakota State Water Commission		
2:10 – 2:30 p.m.	Impacts of local climate and weather on the Legion Lake Wildfire – Darren Clabo, South Dakota State Fire Meteorologist	Numerical simulation of groundwater flow in the High Plains aquifer system in southern South Dakota and northern Nebraska- Kyle Davis and Bill Eldridge, U.S. Geological Survey		